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Rotational oscillations, as opposed to the translational oscillations usually studied, 
are characterized by a periodic change of coordinate axes, which are coupled to a specified 
volume of elastic material. Techniques havebeen devised for measuring such oscillations 
[1-3]. In particular, one [3] describes a seismic sensor for twisting oscillations, which 
is based on the principle of molecular electronics. 

The rotation angle ~ of an elementary volume of a continuous medium is related to the 
deformation field U by [4] 

= (t/2)rotU. ( 0 . 1 )  

The quantity ~ corresponds to the angular acceleration, which can be measured directly only 
in a limited number of cases, when distortions from the field U inside the sensor can be 
neglected. The region where this expression can be applied is evaluated by modeling the mo- 
tion of a spherical inclusion caused by incoming plane compression and shear waves [5, 6]. 
The translation and rotation of a rigid sphere with an eccentric center of mass which is 
embedded in a homogeneous elastic material is examined in [6]. The presence of an eccentri- 
city means that longitudinal as well as transverse waves cause the sphere to rotate~ These 
results show that Eq. (0.i) can be applied with satisfactory accuracy only for a well-balanced 
sphere, which cannot always be attained in practice. Actually, [6] contains an error in 
intermediate terms, and the applicability of Eq. (0.i) is much wider, as will be s]hown below. 

The gradient character of the relationship between ~ and u is most important when ~ de- 
tectors are used in the near zone of a source. In this case the relative contributions to 
the measured quanity from the closest oscillation sources grow significantly compared to 
those from far sources. In the near zone of a monopole source, when the deformation field 
has the form U ~ JRJ-lexP(ikJRl), R = (x,y,z), the derivative of the exponential multiplier IRI-~ 
is more significant than the derivative of the oscillating exponential in the spatial deriva- 
tives used to compute the cross product. Therefore the amplitude of the angular oscillations 

depends more strongly on rR1 by one order of magnitude (NIRl-~)~ compared with the amplitude 
U of the field itself. This emphasis on the contribution of near sources can be of practical 
interest, for example, in seismic observation systems. Here we examine the near field of a 
surface oscillation source in the specific but generally interesting case when the Source 
is represented by a concentrated external force, normal to the surface and harmonic in time 
(Lamb problem). 

Variants of this problem have been examined [7-9] for a homogeneous elastic half-space. 
In the case of harmonic point source the solution is computed by integration. The asymp- 
totic field for the far zone is also presented in [8]. The near zone has practically not 
been examined quantitatively at all [8]. A numerical analysis of the nonstationary Lamb prob- 
lem for the near-zone elastic field was attempted in [9]. However, time-dependent deforma- 
tion results were presented only for one point of the spatial coordinates, which makes it 
impossible to judge either the structure, of the field as a whole or the derivatives of its 
components. These quantities are - required to compute the cross product of the field. 
Moreover, the ratio of the delay time and the characteristic length of the computed signal 
shows that the results are more related to the transition zone than to the near zone. 
Several experimental results are published in [i0]. 
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i. We examine an elastic homogeneous half-space with an oscillation source at the sur- 
face at the origin (the Oz axis is pointed into the elastic material, normal to the surface). 
The source is given by a time-harmonic external point force F(t), on the surface: F(t) = F. 
exp (-i~t). It the field U is evaluated in the near zone, where the magnitude of the deforma- 
tion is caused by the stationary (to = 0) force F [7], then the component of the force F tan- 
gent to the surface often can be neglected in practice, because the relative magnitude of 

= Cs/C~,  where c s and this component in the total field is proportional to the parameter 7 s 2 2 
cp are the velocities of the transverse and longitudinal waves. Therefore further calculations 
w111 be restricted to a force perpendicular to the boundary of the half-space: F = (0, 0, Fz). 
The initial system of equations and the exact integral solution are given in [8]. The Results 
of [8] yield an equation for ~i: 

oo 2 

F z 0) 2 ~" ikzk 
~p ---- ev ~ - ~  ) Z-2-~-~, k) J1 (kr) exp (iq~z - -  i(ot) dk, ( 1 .  i ) 

s~ 

where  k~ = ]/r(o~/c~p-- kS; q~ = ]/oS/c~ - -  kS; Z(o), k) ~- (2k 2 -  o)~/c~) s +4k2q~k~; % i s  t h e  u n i t  v e c t o r  in  

t h e  c y l i n d r i c a l  c o o r d i n a t e  s y s t e m  [ r ,  ~ ,  z ) ;  ~ = p0Cs ~ i s  t h e  Lam~ c o n s t a n t ,  and J n ( x )  i s  
a B e s s e l  f u n c t i o n  o f  t h e  f i r s t  k i n d .  In  t h e  n e a r  zone ,  i t  i s  c o n v e n i e n t  t o  expand  t h e  f i e l d  
and i t s  r o t a t i o n a l  components  in  powers  o f  t h e  s m a l l  p a r a m e t e r  r* = k~r = ro)/c~. Al though  
in  p r i n c i p l e  t h i s  e x p a n s i o n  can a l s o  be o b t a i n e d  f o r  z ,  t h e  c o m p l e x i t y  o f  t h e  r e s u l t s  l e a d s  
us  t o  examine  t h e  l i m i t i n g  c a s e  z § 0. For  example ,  a f t e r  o b v i o u s  changes  in  v a r i a b l e s ,  t h e  
e x p r e s s i o n  f o r  U z becomes [8]  

oo+i6 
tOFz l' Jo (pr*) p V 9  --  V s dp 

= - (2p  _ Vp-r=5_  ' > o .  
0 

Here integration along the real axis is shifted toward positive Im(p) to avoid the singular 
points of the integrand (i.i) in the proper manner. 

The main component of the integral itself for r* << 1 has large values of p on the order 
of i/r*, and the magnitude of the component is of the same order. This means that the expan- 
sion startswith the term l/r*. The corresponding coefficient can be found by integrating 
the asymptotic integrand for large p: 

1 Jo (pr*) dp = 
1 

2 ( i - -V  2) _ 2r* (i -- @)'" 
0 

Subtracting the asymptote for large p from the exact expression for the integrand and extrapo- 
lating r* to zero yields the next term in the expansion. Continuing this method yields 
a series for Uz: 

Fz [ 3--4@+3?4 (r*)~+ ... 1 
uz = 4n~r( t - -?=)  t - -  i I r*  4 ( t - - ~ )  

2 (t -- ?2) s g s 2 + 72 + 4s2 g s - Y ~  ~fs-f~?2 _ (2s 2 + t)2 ds. ( 1 . 2 )  
I 

Jo (2s2 + 1)3 -- 4su ~/s-Y-~ ]/-;u + 7z 

Here integration is carried out on the real axis, where the integrand has no singular points. 
The integral I is of order one and has a weak dependence on 7. 

Calculation of the zero term in the expansion of ~ shows that for z = 0 the correspond- 
ing integral diverges at the upper bound, because the cross product of the field is not de- 
fined at the upper bound. The divergence vanishes for any finite z > O, and the dependence 
on z is weak. Taking the limit of the series as z + 0 yields the expression 

e~Fz [ 3--4'2+3'4 (r*)~ + �9 �9 ']" (1.3) 
�9 =4=~/~1~) i+ 4(i_~2 ) 

As expected, in the near zone the amplitude of uz(~r -I) varies an order of magnitude more 
slowly than the amplitude of ~ (N r-=). The zero term of the expansion is the limiting case 
of a stationary force F(m = 0) [7], and corrections to the amplitudes of ~ and u z can be in- 
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tegrated for small values of r e , because the first term in the expansion of u z is a phase 
correction. 

Beyond the region where r* can be considered small and where Eqs. (1.2) and (1.3) apply, 
the components of the elastic field must be investigated by numerical methods. Here the 
model parameters were chosen to match a real experiment: c s = 300 m/see, z = 0.3 m. Figures 
i and 2 show calculated amplitudes Uz, Ur, and ~ (curves i-3) as a function of the distance r 
for a frequency of I Hz, Cp.= 1600 m/see (Fig. i) or Cp = 2000 m/see (Fig. 2), and F z = i0 ~ N. 

The asymptoticbehavior of Uz and ~ as r ~ 0 agrees with the analytical results. Here no 
significant peculiarities in the behavior of the components were observed in the transition 
zone between the near and far zones. Figure 3 shows the phase difference ~ between value 

and Uz which correspond to Figs. 1 and 2. The dependence of the results on Cp, that is, 
on ~, is insignificant. 

2. We now examine a rigid sphere of mass m and radius a, which is embedded in an elastic 
material with parameters Cp, Cs, and P0 [6]. The sphere is dynamically unsymmetric, with a 
geometric center at the point r = 0 and a center of .mass at r = r 0. The vector r0 lies in 
the plane y = 0, and the angle between the axis Oz and r0 is %. The sphere is excited by. 
a plane longitudinal wave Up = e~Slexp(ik~z--i~t ) (kp = ~/Cp, e z is the unit vector). 
The total displacement U of the elastic material satisfies the wave equation ~2Ui+ c~ grad. 
div U - c~ rot rot U = 0 and the boundary condition U = U0 for[r I ~ a (U 0 is the displace- 
ment vector for points on the surface of the sphere). The solution method in [6] can be used 
to provide an exact solution for both the translational and rotational movement of the sphe- 
rical inclusion. Because [6] contains an error in the intermediate terms, we present the 
correct result for angular oscillation amplitudes of interest to us in the case where the 
inertial tensor of the sphere is diagonal. Rotation occurs around the Oy axis, and the cor- 
responding rotation angle is 

~ y =  --~q c O S ~ o - -  a \ma" ~-~-~ (p l ) + e p  . ( 2 . 1 )  

where e = ro/a is the relative eccentricity, ly is the moment of inertia, • = Pi/Po; P l  is 
the density of the sphere, K = ksa , k s = r s, q = 9ih (1) (K)/(7SK3A• =[3h(zl)(K)h~l)i('fKi+AI/(• 

k -~ Kh (1) (K)/h(~ I) (K), ?'~ cs/cp, A -~ h~o~(?K) h~(K) + 2h(2 I) (.~K)h(ol)(K), and h(# ) (x) is a spherical Bessel 
function of the third kind. 

The case where the sphere is excited by a plane transverse wave U~ ~ e~S2exp (iks z -- i(ot), 
is treated analogously. The single nonzero projection of the rotation angel ~0y is 

~P~ = - -  (v~ s in  ~~ - -  (P - -  i )  W ) a  ma 2 - ~  ( p - - i ) + e 2 p |  , ( 2 . 2 )  

w h e r e  w = 3 (~KSh?)(K))-I; v = 9i]z~ i) (TK) (K3A• -1 .  

3. The correction to Eq. (0.I) in the long-wavelength region can beobtained from the 
expansion of Eqs. (2.1) and (2.2) for small K: 
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The form of this expansion shows that the second-order corrections to K are proportional to 
~e, and their dependence on the angle a 0 of the incoming wave is different for different 
wave types. Therefore decreasing the mass of the detector can decrease the corrections. 

We will show that measurements of the amplitudes of translational and rotational waves 
at a single point can be used to determine the di.rection and distance to a nearby surface 
source. Figure 4 shows the ratio of Uz to Q = ~ for various frequencies and elastic 
constants for c s = 300 m/sec (curve I: f = 0.2 Hz, Cp = 1600 m/sec; curve 2: f = i Hz, 
Cp = 1600 m/sec; curve 3: f = i Hz, Cp = 2000 m/sec; curve 4: f = 5 Hz, cp = 1600 m/sec) 
as a function of r. On the linear section, the acceleration ratio is exactly equal to r 
and is independent of the elastic properties of the material, the frequency, and the oscilla- 
tion source intensity; this independence is most important for practical applications. The 
distance can also bedetermined from the nonlinear sections by using calibration or the proper 
calculated corrections. Naturally, in this case the corrections will depend on a series of 
parameters, mainly on the wavelength ~ ~= = 2~/k=. The direction to the source is determined 
easily from the orthogonality of the vectors ~ and r (~.r = 0). The components of the radius 
vector to the source can be computed from the vector product [u z • ~]. 

As a result, we conclude that along with the obvious appliction of translational-oscilla- 
tion seismic detectors for differentiating wave types, these detectors also can be used to 
study the gradient characteristics of elastic fields, particularly in the near zone of an 
ocillating source. 
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